Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comput Struct Biotechnol J ; 21: 1362-1371, 2023.
Article in English | MEDLINE | ID: covidwho-2210127

ABSTRACT

Although multiple vaccines have been developed and widely administered, several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors (HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire were compared and it was found that disease progression was related negatively with diversity and positively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS-CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS-CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high-abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential application of this model, we established the webserver, CoV2-TCR, in which users can obtain those recognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should be helpful for vaccine design on SARS-CoV-2 variants.

2.
J Am Chem Soc ; 144(23): 10543-10555, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1873412

ABSTRACT

The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, ß-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral , Humans , Nucleocapsid Proteins/chemistry , RNA
3.
Biol Conserv ; 254: 108952, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1009319

ABSTRACT

With >1 400 species, bats comprise the second-largest order of mammals and provide critical ecological services as insect consumers, pollinators, and seed dispersers. Yet, bats are frequently associated with infectious human diseases such as SARS, MERS, and Ebola. As early as the end of January 2020, several virological studies have suggested bats as a probable origin for SARS-CoV-2, the causative agent of COVID-19. How does the public view the role of bats in COVID-19? Here we report pilot data collected shortly after the outbreak of COVID-19 using two online surveys, combined with a conservation intervention experiment, primarily on people who are receiving or have received higher education in China. We found that 84% of the participants of an online survey (n = 13 589) have misunderstood the relationship between bats and COVID-19, which strengthened negative attitudes towards bats. Knowledge of bats, gender, and education level of the participants affected their attitudes towards bats. Participants who indicated a better knowledge of bats had a more positive attitude towards bats. The proportion of female participants who had negative attitudes towards bats was higher than that of male participants. Participants with a higher education level indicated a more positive attitude towards bats after the outbreak of COVID-19. A specially prepared bat conservation lecture improved peoples' knowledge of bats and the positive attitudes, but failed to correct the misconception that bats transmit SARS-CoV-2 to humans directly. We suggest that the way virologists frame the association of bats with diseases, the countless frequently inaccurate media coverages, and the natural perceptual bias of bats carrying and transmitting diseases to humans contributed to the misunderstandings. This probably led to a rise in the events of evicting bats from dwellings and structures by humans and the legislative proposal for culling disease-relevant wildlife in China. A better understanding of the relationship between disease, wildlife and human health could help guide the public and policymakers in an improved program for bat conservation.

4.
Arch Virol ; 165(4): 845-851, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-877

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that can cause vomiting and watery diarrhea in pigs and death in piglets. Since PDCoV was first detected in 2009 in Hong Kong, the prevalence of PDCoV has increased in recent years, resulting in serious economic losses to the swine industry. The coronavirus spike (S) protein is an antigen that has been demonstrated to contain epitopes that induce neutralizing antibodies. The presence of serum and milk IgA antibodies against pathogens that replicate primarily on mucosal surfaces is important for mucosal immunity. Here, an indirect anti-PDCoV IgA antibody enzyme-linked immunosorbent assay (PDCoV S1 IgA ELISA) using the purified S1 portion of S protein as the coating antigen was developed to detect PDCoV IgA antibodies in serum and sow's milk. A receiver operating characteristic (ROC) curve analysis showed high specificity and sensitivity of the PDCoV-S1-IgA-ELISA based on samples confirmed by IFA. Anti-PDCoV IgA antibodies in 152 serum samples and 65 milk samples collected from six farms that had experienced diarrhea outbreaks within previous last two years were detected by this assay, and 62.5% of the serum samples and 100% of the milk samples were positive for PDCoV. The indirect ELISA method established in this study will provide a convenient tool for measurement of serum and milk IgA levels against PDCoV in pig herds, rapid detection of PDCoV infection in pigs, and evaluation of the immunogenicity of vaccines.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/veterinary , Coronavirus/immunology , Immunoglobulin A/blood , Swine Diseases/blood , Animals , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Swine , Swine Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL